Home
Class 12
PHYSICS
The potential energy of a particle in a ...

The potential energy of a particle in a force field is:
`U = (A)/(r^(2)) - (B)/(r )`,. Where `A` and `B` are positive
constants and `r` is the distance of particle from the centre of the field. For stable equilibrium the distance of the particle is

Promotional Banner

Similar Questions

Explore conceptually related problems

The potential energy of a particle in a conservative field is U =a/r^3-b/r^2, where a and b are positive constants and r is the distance of particle from the centre of field. For equilibrium, the value of r is

The potential energy of a particle in a conservative field is U =a/r^3 - b/r^2 where a and b are positive constants and r is the distance of particle from the centre of field. For equilibrium, the value of r is

The potential energy of a particle in a force field is : U= A/r^2-B/r^1 , where A and B are positive constant and r is the centre of the field. For stable equilibrium, the distance of the particle is :

The potential energy of a particle in a certain field has the form U=(a//r^2)-(b//r) , where a and b are positive constants and r is the distance from the centre of the field. Find the value of r_0 corresponding to the equilibrium position of the particle, examine whether this position is stable.

The potential energy of a particle in a certain field has the form U=(a//r^2)-(b//r) , where a and b are positive constants and r is the distance from the centre of the field. Find the value of r_0 corresponding to the equilibrium position of the particle, examine whether this position is stable.