Home
Class 11
MATHS
Evaluate the limits, if exist lim(x rarr...

Evaluate the limits, if exist `lim_(x rarr 0)(e^(4x)-1)/x`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{e^{4x} - 1}{x} \), we can follow these steps: ### Step 1: Identify the form of the limit As \( x \to 0 \), both the numerator \( e^{4x} - 1 \) and the denominator \( x \) approach 0. This gives us the indeterminate form \( \frac{0}{0} \). ### Step 2: Use L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if \( \lim_{x \to c} \frac{f(x)}{g(x)} \) results in \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), then: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] In this case, let \( f(x) = e^{4x} - 1 \) and \( g(x) = x \). ### Step 3: Differentiate the numerator and denominator Now we differentiate \( f(x) \) and \( g(x) \): - The derivative of \( f(x) = e^{4x} - 1 \) is \( f'(x) = 4e^{4x} \). - The derivative of \( g(x) = x \) is \( g'(x) = 1 \). ### Step 4: Apply L'Hôpital's Rule Now we can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{e^{4x} - 1}{x} = \lim_{x \to 0} \frac{4e^{4x}}{1} \] ### Step 5: Evaluate the limit Now we evaluate the limit as \( x \to 0 \): \[ \lim_{x \to 0} 4e^{4x} = 4e^{0} = 4 \cdot 1 = 4 \] ### Conclusion Thus, the limit exists and is equal to: \[ \lim_{x \to 0} \frac{e^{4x} - 1}{x} = 4 \]

To evaluate the limit \( \lim_{x \to 0} \frac{e^{4x} - 1}{x} \), we can follow these steps: ### Step 1: Identify the form of the limit As \( x \to 0 \), both the numerator \( e^{4x} - 1 \) and the denominator \( x \) approach 0. This gives us the indeterminate form \( \frac{0}{0} \). ### Step 2: Use L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if \( \lim_{x \to c} \frac{f(x)}{g(x)} \) results in \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), then: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT|Exercise EXERCISE 13.2|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT|Exercise EXERCISE 12.1|4 Videos
  • LINEAR INEQUALITIES

    NCERT|Exercise EXERCISE 6.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the limits,if exist lim_(x rarr0)(x(e^(x)-1)/(1-cos x))

Evaluate the limits,if exist lim_(x rarr0)(e^(2+x)-e^(2))/(x)

Evaluate the limits,if exist quad lim_(x rarr0)(e^(sin x)-1)/(x)

Evaluate the limits,if exist lim_(x rarr0)(log_(e)(1+2x))/(x)

lim_(x rarr0)((e^(x)-x-1)/(x))

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

Evaluate the limits,if exist (lim)_(x rarr0)(log(1+x^(3)))/(sin^(3)x)

lim_(x rarr0)((1+x)^(4)-1)/(x)

lim_(x rarr0)((1+x)^(4)-1)/(x)