Home
Class 12
MATHS
If A1, A2,.....An are independent events...

If `A_1, A_2,.....A_n` are independent events associated with a random experiment; then `P(A_1 nn A_2 nn .......nn A_n) = P(A_1)P(A_2).......P(A_n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that, if A_1 and A_2 are two events, which are not necessarily mutually exclusive then P(A_1 uu A_2) = P(A_1) + P(A_1 nn A_2)

If A_1,A_2,....A_n are n independent events such that P(A_k)=1/(k+1),K=1,2,3,....,n; then the probability that none of the n events occur is

If A_1, A_2, …, A_n are n independent events, such that P(A_i)=(1)/(i+1), i=1, 2,…, n , then the probability that none of A_1, A_2, …, A_n occur, is

If A_1, A_2, …, A_n are n independent events, such that P(A_i)=(1)/(i+1), i=1, 2,…, n , then the probability that none of A_1, A_2, …, A_n occur, is

If A_1, A_2, …, A_n are n independent events, such that P(A_i)=(1)/(i+1), i=1, 2,…, n , then the probability that none of A_1, A_2, …, A_n occur, is

If A_1, A_2, …, A_n are n independent events, such that P(A_i)=(1)/(i+1), i=1, 2,…, n , then the probability that none of A_1, A_2, …, A_n occur, is

If A_1, A_2, …, A_n are n independent events, such that P(A_i)=(1)/(i+1), i=1, 2,…, n , then the probability that none of A_1, A_2, …, A_n occur, is

If a_1. a_2 ....... a_n are positive and (n - 1) s = a_1 + a_2 +.....+a_n then prove that (a_1 + a_2 +....+a_n)^n ge (n^2 - n)^n (s - a_1) (s - a_2)........(s - a_n)

If P(A_1) = 0.2 , P(A_2) = 0.1 and P(A_3) = 0.3 and these events are mutually independent, then what is the value of P(A_1 nn A_2 nn A_3) ?

We know that, if a_1, a_2, ..., a_n are in H.P. then 1/a_1,1/a_2,.....,1/a_n are in A.P. and vice versa. If a_1, a_2, ..., a_n are in A.P. with common difference d, then for any b (>0), the numbers b^(a_1),b^(a_2),b^9a_3),........,b^(a_n) are in G.P. with common ratio b^d. If a_1, a_2, ..., a_n are positive and in G.P. with common ration, then for any base b (b> 0), log_b a_1 , log_b a_2,...., log_b a_n are in A.P. with common difference logor.If x, y, z are respectively the pth, qth and the rth terms of an A.P., as well as of a G.P., then x^(z-x),z^(x-y) is equal to