Home
Class 11
MATHS
find x andy for which the inequalities h...

find `x` and`y` for which the inequalities hold `(x^4+2ix)-(3x^2+iy)=(3-5i)+(1+2iy)`

Promotional Banner

Similar Questions

Explore conceptually related problems

find x andy for which the inequalities hold (x^(4)+2ix)-(3x^(2)+iy)=(3-5i)+(1+2iy)

The number of solutions of the equation (x^(4)+2x i)-(3x^(2)+iy)=(1+2yi)+(3-5i), where x and y are positive real is

Find the real values of x and y for which : {:((i),(1-i)x+(1+i)y=1 - 3i,(ii),(x+iy)(3-2i)=(12+5i)),((iii),x+4yi =ix + y + 3,(iv),(1+i)y^(2)+(6+i)=(2+i)x),((v),((x+3i))/((2+iy))=(1-i),(vi),((1+i)x-2i)/((3+i))+((2-3i)y+i)/((3-i))=i):}

Find the real value of x and y,if x: (1+i)(x+iy)=2-5i .

Find the real value of x and y,if x: (3x-2iy)(2+i)^2=10(1+i)

(x+iy)(2-3i)=4+i

Find the values of x and y, if (x+ iy) (2- 3i)=4+i

Find the real values of xandy, if (3x-7)+2iy=-5y+(5+x)i

Find the real numbers x,y such that ( iy+ x)(3+2i) = 1+ i

Find the value of x and y which satisfy the following equation (x, y in R): frac{x+iy}{2+3i} + frac{2+i}{2-3i} = frac{9}{13} (1+i)