Home
Class 11
MATHS
If [x] denotes the integral part of x an...

If [x] denotes the integral part of x and `a_n=sum_(r=0)^(n-1) [x+r/n]` then find `Lt_n->oo (a_1+a_2+...a_n)/(n^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_r is the coefficient of x^r in the expansion of (1+x)^n then a_1/a_0 + 2.a_2/a_1 + 3.a_3/a_2 + …..+n.(a_n)/(a_(n-1)) =

If a_r is the coefficient of x^r in the expansion of (1+x)^n then a_1/a_0 + 2.a_2/a_1 + 3.a_3/a_2 + …..+n.(a_n)/(a_(n-1)) =

If a_1,a_2 …. a_n are positive real numbers whose product is a fixed real number c, then the minimum value of 1+a_1 +a_2 +….. + a_(n-1) + a_n is :

If a_1,a_2 …. a_n are positive real numbers whose product is a fixed real number c, then the minimum value of 1+a_1 +a_2 +….. + a_(n-1) + a_n is :

If a_1. a_2 ....... a_n are positive and (n - 1) s = a_1 + a_2 +.....+a_n then prove that (a_1 + a_2 +....+a_n)^n ge (n^2 - n)^n (s - a_1) (s - a_2)........(s - a_n)

If a_1,a_2,.....a_n are positive real number whose product is a fixed number c, then the minimum value of a_1+a_2+......+a_(n-1)+a_n is

if f(x) = (x - a_1) (x - a_2) .....(x - a_n) then find the value of lim_(x to a_1) f(x)

A sequence of no. a_1,a_2,a_3 ..... satisfies the relation a_n=a_(n-1)+a_(n-2) for nge2 . Find a_4 if a_1=a_2=1 .

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :