Home
Class 12
MATHS
for any four vectors veca,vecb, vecc and...

for any four vectors `veca,vecb, vecc and vecd` prove that `vecd. (vecaxx(vecbxx(veccxxvecd)))=(vecb.vecd)[veca vecc vecd]`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any four vectors veca , vecb , vecc , vecd we have (vecaxxvecb)xx(veccxxvecd)=[veca,vecb,vecd]vecc-[veca,vecb,vecc]vecd=[veca,vecc,vecd]vecb-[vecb,vecc,vecd]veca .

If veca,vecb,vecc,vecd are coplaner vectors, then (vecaxxvecb)xx(veccxxvecd)=

If veca, vecb, vecc, vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd)=

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

For any four vectors veca, vecb, vecc, vecd the expressions (vecb xx vecc).(veca xx vecd) +(vecc xx veca).(vecb xx vecd)+(veca xx vecb).(vecc xx vecd) is always equal to:

For any four vectors veca, vecb, vecc, vecd the expressions (vecb xx vecc).(veca xx vecd) +(vecc xx veca).(vecb xx vecd)+(veca xx vecb).(vecc xx vecd) is always equal to:

Prove that vecaxx{vecbxx(veccxxvecd)}=(vecb.vecd)(vecaxxvecc)-(vecb.vecc)(vecaxxvecd)

Prove that vecaxx{vecbxx(veccxxvecd)}=(vecb.vecd)(vecaxxvecc)-(vecb.vecc)(vecaxxvecd)

If veca, vecb, vecc and vecd are unit vectors such that (vecaxx vecb).(veccxxvecd)=1 and veca.vecc=1/2 then