Home
Class 10
MATHS
If the solution of the equation logx(125...

If the solution of the equation `log_x(125x).log_25^2 x=1 are alpha and beta (alpha < beta).` Then the value of `1/(alpha beta) `is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the solution of the equation log_(x)(125x)*log_(25)^(2)x=1are alpha and beta(alpha

If alpha and beta are solutions of the equation 5^(log_(5)2)+x^(log_(5)x)=1250; then log_(beta)alpha equals :

If the root of the equation log_(2)(x)-log_(2)(sqrt(x)-1)=2 is alpha, then the value of alpha^(log_(4)3) is (a) 1 (b) 2 (c) 3 (d) 4

If alpha and beta are solutions of the equation 4log_(3)^(2)x-4log_(3)x^(2)+1=0 then the value of |(sqrt(alpha beta)+1)/(sqrt(alpha beta)-1)| is

If alpha and beta are the roots of the equation (log_(2)x)^(2)+4(log_(2)x)-1=0 then the value of log_(beta)alpha+log_(alpha)beta equal to

If x and alpha are real, then the inequation log_(2)x+log_(x)2+2cos alpha le 0

If x and alpha are real, then the inequation log_(2)x+log_(x)2+2cos alpha le 0

If x and alpha are real, then the inequation log_(2)x+log_(x)2+2cos alpha le 0

IF alpha and beta be the roots of the equation 2x^2+x+1=0 find the equation whose roots are alpha^2/beta and beta^2/alpha

Let alpha,beta , are two real solution of equation (log_(10)x)^2 + log_(10)x^2 = (log_(10))^2 -1, then sqrt1/(alpha beta) equal to (i) 20 (ii) 3 (iii) 10 (iv) 1