Home
Class 11
MATHS
Prove that from the equality (sin^4alpha...

Prove that from the equality `(sin^4alpha)/a+(cos^4alpha)/b=1/(a+b)` follow the relation : `(sin^8alpha)/a^3+(cos^8alpha)/b^3=1/(a+b)^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that from the equality (sin^(4)alpha)/a+(cos^(4)alpha)/b=1/(a+b) follows the relations, (sin^(8)alpha)/a^(3) +(cos^(8)alpha)/b^(3)=1/(a+b)^(3)

Q. Prove that from the equality sin^4 alpha/a+cos^4 alpha/b=1/(a+b) follows the relation; sin^8 alpha/a^3+cos^8 alpha/b^3=1/(a+b)^3.

Prove that from the equality (sin^(4)alpha)/(a)+(cos^(4)alpha)/(b)=(1)/(a+b) follow the relation :(sin^(8)alpha)/(a^(3))+(cos^(8)alpha)/(b^(3))=(1)/((a+b)^(3))

Q.Prove that from the equality (sin^(4)alpha)/(a)+(cos^(4)alpha)/(b)=(1)/(a+b) follows the relation; (sin^(8)alpha)/(a^(3))+(cos^(8)alpha)/(b^(3))=(1)/((a+b)^(3))

If (sin^4alpha)/(a)+(cos^4alpha)/(b)=1/(a+b) show that, (sin^8alpha)/(a^3)+(cos^8alpha)/(b^3)=1/(a+b)^3

If (sin^(4)alpha)/a +(cos^(4)alpha)/b = 1/(a+b) , show that sin^(8)alpha/a^(3) +cos^(8)alpha/b^(3) =1/(a+b)^(3)

If sin^4alpha/a+cos^4alpha/b=1/(a+b) show that sin^8alpha/a^3+cos^8alpha/b^3=1/((a+b)^3)

If sin^4alpha/a+cos^4alpha/b=1/(a+b) ,then show that sin^8alpha/a^3+cos^8alpha/b^3=1/((a+b)^3) .

If (sin alpha )/(a) = ( cos alpha )/(b) , then a sin 2alpha + b cos 2 alpha =

Prove that sin^2alpha-sin^4alpha= cos^2alpha-cos^4alpha