Home
Class 12
MATHS
The value of lim(n->oo) prod(r=0)^(n) (1...

The value of `lim_(n->oo) prod_(r=0)^(n) (1+1/(2^(2^r)))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n)e^((r)/(n)) is -

The value of lim_( n to oo) sum_(r =1)^(n) (r )/(n^(2))"sec"^(2)(r^(2))/(n^(2)) is equal to -

The value of the limit prod_(n=2)^(oo)(1-(1)/(n^(2))) is

Evaluate: lim_(n rarr oo) (sum_(r=0)^( n) (1)/(2^(r))) .

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

The value of lim_(n->oo)sum_(r=0)^(n) (sum_(t=0)^(r-1)1/(5^n)*"^n C_r * "^r C_t .(3^t)) is equal to

The value of lim_(n->oo)sum_(r=0)^(n) (sum_(t=0)^(r-1)1/(5^n)*"^n C_r * "^r C_t .(3^t)) is equal to

The value of lim_(n->oo)sum_(r=1)^(n)1/(5^n).^n C_r(sum_(t=0)^(r-1).^r C_t .3^t) is equal to

The value of lim_(n rarr oo)[{4sum_(r=0)^(n)(r+1)(r+2)(r+3)}^((1)/(4))-n] is