Home
Class 12
MATHS
vec a, vec b, vec c, vec d are the posit...

`vec a`, `vec b`, `vec c`, `vec d` are the position vectors of the four distinct points A, B, C, D respectively. If `vec b-vec a=vec c- vec d`, then show that ABCD is a parallelogram.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a , vec b , vec c , vec d be the position vectors of the four distinct points A , B , C , Ddot If vec b- vec a= vec c- vec d , then show that A B C D is parallelogram.

Let vec a , vec b , vec c , vec d be the position vectors of the four distinct points A , B , C , Ddot If vec b- vec a= vec c- vec d , then show that A B C D is parallelogram.

Let vec a , vec b , vec c , vec d be the position vectors of the four distinct points A , B , C , Ddot If vec b- vec a= vec a- vec d , then show that A B C D is parallelogram.

Let vec a , vec b , vec c , vec d be the position vectors of the four distinct points A , B , C , Ddot If vec b- vec a= vec c- vec a , then show that A B C D is parallelogram.

Let vec a,vec b,vec c,vec d be the position vectors of the four distinct points A,B,C,D. If vec b-vec a=vec a-vec d, then show that ABCD is parallelogram.

If vec a,vec b,vec c are the position vectors of points A,B,C and D respectively such that (vec a-vec d)*(vec b-vec c)=(vec b-vec d)*(vec c-vec a)=0 then D is the

If vec a , vec b , vec c and vec d are the position vectors of points A, B, C, D such that no three of them are collinear and vec a + vec c = vec b + vec d , then ABCD is a

If vec a ,\ vec b ,\ vec c and vec d are the position vectors of points A , B ,\ C ,\ D such that no three of them are collinear and vec a+ vec c= vec b+ vec d ,\ t h e n\ A B C D is a a. rhombus b. rectangle c. square d. parallelogram

If vec a,vec b,vec c and vec d are the position vectors of points A,B,C,D such that no three of them are collinear and vec a+vec c=vec b+vec d, then ABCD is a a. rhombus b.rectangle c.square d. parallelogram

If vec a ,vec b,vec c and vec d are the position vectors of the points A, B, C and D respectively in three dimensionalspace no three of A, B, C, D are collinear and satisfy the relation 3vec a-2vec b +vec c-2vec d = 0 , then