Home
Class 12
MATHS
If x^y=e^(x-y), show that (dy)/(dx)=(log...

If `x^y=e^(x-y),` show that `(dy)/(dx)=(logx)/({log(x e)}^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y)=e^(x-y), show that (dy)/(dx)=(log x)/({log(xe)}^(2))

IF x^y=e^(x-y) then show that (dy)/(dx)=(logx)/[log(xe)]^2 .

If x^y=e^(x-y), Prove that (dy)/(dx)=(logx)/((1+logx)^2)

If x^y=e^(x-y) , prove that (dy)/(dx)=(logx)/(1+logx)^2

If x^y = e^(x-y) , prove that dy/dx = (logx)/({log(xe)}^2)

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), Prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))