Home
Class 11
MATHS
Given tan A and tan B are the roots of x...

Given tan A and tan B are the roots of `x^2-ax + b = 0`, The value of `sin^2(A + B)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan A and tan B are the roots of x^(2)-px+q=0, then the value of sin^(2)(A+B) is

Given tan A and tan B are the roots of equation x^(2)-ax+b=0 . The value of sin^(2)(A+B) is a) (a^(2))/(a^(2)+(1-b)^(2)) b) (a^(2))/(a^(2)+b^(2)) c) (a^(2))/((a+b)^(2)) d) (b^(2))/(a^(2)+(1-b)^(2))

IF tan A , tan B are the roots of x ^2 -px+q=0 , the value of sin ^2(A+B) is

Given that tan A, tan B are the roots of the equation x^(2)bx+c=0, the value of sin^(2)(alpha+beta) is

tan22 o and tan23@ are roots of x^(2)+ax+b=0 then

IF tan A and tan B are the roots of the quadratic x^2 -px+q=0 then sin ^2 (A+B)=

If tan A and tan B are the roots of the quadratic equation x^2-px + q =0 then value of sin^2(A+B)

If tan A and tan B are the roots of abx^2- c^2x + ab= 0 , where a, b, c are the sides of the tnangle ABC, then the value of sin^2 A + sin^2 B + sin^2 C is :