Home
Class 12
MATHS
If g(f(x))=|sinx| and f(g(x))=(sin(sqrtx...

If `g(f(x))=|sinx|` and `f(g(x))=(sin(sqrtx))^2` then

A

`f(x)=sin^(2)x,g(x)=sqrt(x)`

B

`f(x)=sinxg(x)=|x|`

C

`f(x)=x^(2),g(x)=sin sqrt(x)`

D

f(x) and g(x) cannot be determined

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exercise 1.1|8 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exercise 1.2|12 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exercies 1d|10 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • THREE-DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos

Similar Questions

Explore conceptually related problems

If g(f(x))=|sin x| and f(g(x))=(sin(sqrt(x)))^(2) then

If g(f(x))=|sin x| and f(g(x))=(sin sqrt(x))^(2) then f(x)=sin^(2)x,g(x)=sqrt(x)f(x)=sin x,g(x)=|x|f(x=x^(2),g(x)=sin sqrt(x)f and g cannot be determined

If g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x then f(x) is equal to

For x in R, f(x) = | log 2- sin x| and g(x) = f(f(x)) , then

For x in R ,f(x)=|log2-sinx| and g(x)=f(f(x)) , then (1) g is not differentiable at x=0 (2) g'(0)=cos(log2) (3) g'(0)=-cos(log2) (4) g is differentiable at x=0 and g'(0)=-sin(log2)

If f(x)=sin x and g(x)=f(f(f,.....(f(x)))) then value of g'(0)+g''(0)+g'''(0) equals

If fog=|sinx| and gof=sin^2sqrt(x) then f(x) and g(x) are