Home
Class 12
MATHS
Number of binary operations on the set {...

Number of binary operations on the set {a, b} are (A) 10 (B) 16 (C) 20 (D) 8

A

10

B

16

C

20

D

8

Text Solution

Verified by Experts

Number of binary operations in the set {a,b}
`=2^4 =16`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exercise 1.4|13 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • THREE-DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos

Similar Questions

Explore conceptually related problems

Define a binary operation on a set.

Find the total number of binary operations on {a,b}.

The number of binary operations that can be defined on a set of 2 elements is (a) 8 (b) 4 (c) 16 (d) 64

How many cubes are there in the group? (A) 20 (B) 10 (C) 16 (D) 8

Let '**' be the binary operation defined on the set Z of all integers as a ** b = a + b + 1 for all a, b in Z . The identity element w.r.t. this operations is

Consider the binary operation* on the set {1, 2, 3, 4, 5} defined by a * b=min. {a, b}. Write the operation table of the operation *.

Let A=NxN , and let * be a binary operation on A defined by (a , b)*(c , d)=(a d+b c , b d) for all (a , b),c , d) in NxNdot Show that : '*' is commutative on A '*^(prime) is associative onA A has no identity element.

Let A=NxxN , and let * be a binary operation on A defined by (a , b)*(c , d)=(a d+b c , b d) for all (a , b), (c , d) in NxxNdot Show that: * is commutative on Adot (ii) * is associative on Adot

The number of commutative binary operations that can be defined on a set of 2 elements is (a) 8 (b) 6 (c) 4 (d) 2

On the set Q^(+) of all positive rational numbers a binary operation * is defined by a*b=(ab)/(2) for all a,b in Q^(+). The inverse of 8 is (1)/(8) (b) (1)/(2)(cc)2(d)4

NAGEEN PRAKASHAN-RELATIONS AND FUNCTIONS -Miscellaneous Exercise
  1. Let f: R ->Rbe defined as f(x) = 10 x + 7. Find the function g: R ->R...

    Text Solution

    |

  2. Let f: W ->Wbe defined as f(n) = n - 1, if is odd and f(n) = n + 1, i...

    Text Solution

    |

  3. If f: R ->Ris defined by f(x) = x^2- 3x + 2, find f(f(x)).

    Text Solution

    |

  4. Show that the function f: R rarr { x in R: -1 lt x lt 1 } defined by ...

    Text Solution

    |

  5. Show that the function f: R->Rgiven by f(x)=x^3is injective.

    Text Solution

    |

  6. Give examples of two functions f:" "N->Z" "a n dg:" "Z->Z such that o...

    Text Solution

    |

  7. Given examples of two functions f:" "N ->N" "a n d""""""g:" "N->N such...

    Text Solution

    |

  8. Given a non-empty set X, consider P(X) which is the set of all subs...

    Text Solution

    |

  9. Given a non-empty set X, consider the binary operation *: P(X)xx P(X)...

    Text Solution

    |

  10. Find the number of all onto functions from the set {1, 2, 3, , n)to ...

    Text Solution

    |

  11. Let S = {a , b , c} a n d T = {1, 2, 3}. Find F^(-1)of the following ...

    Text Solution

    |

  12. Consider the binary operations*: RxxR->R and o: RxxR->R defined as ...

    Text Solution

    |

  13. Given a non -empty set X, let *:" "P(X)" "xx" "P(X) ->P(X) be defined ...

    Text Solution

    |

  14. Define a binary operation * on the set A={0,1,2,3,4,5} as a*b=a+b (mod...

    Text Solution

    |

  15. Let A" "=" "{-1," "0," "1," "2} , B" "=" "{-4," "-2," "0," "2} and f,g...

    Text Solution

    |

  16. LetA = {1, 2, 3}Then number of relations containing (1, 2) a n d (1, 3...

    Text Solution

    |

  17. Let A = {1, 2, 3}. Then number of equivalence relations containing (1...

    Text Solution

    |

  18. Let f: R->Rbe the Signum Function defined as f(x)={1,x >0 0,x=0-1,x<1 ...

    Text Solution

    |

  19. Number of binary operations on the set {a, b} are (A) 10 (B) 16 (C)...

    Text Solution

    |