Home
Class 11
MATHS
log(0.75)(log2(sqrt(sqrt(1/0.125))))...

`log_(0.75)(log_2(sqrt(sqrt(1/0.125))))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

The value of log_0.75log_2sqrtroot(-2)((0.125)) is equal to

Simplify: root(3)(5^((1)/(log_(7)log))+(1)/(sqrt(-log_(10)(0.1))))

Prove that log_(7) log_(7)sqrt(7sqrt((7sqrt7))) = 1-3 log_(7) 2 .

Prove that log_(7) log_(7)sqrt(7sqrt((7sqrt7))) = 1-3 log_(7) 2 .

Prove that log_(7) log_(7)sqrt(7sqrt((7sqrt7))) = 1-3 log_(7) 2 .

Prove that log_(7) log_(7)sqrt(7sqrt((7sqrt7))) = 1-3 log_(7) 2 .

If log_(7)log_(7) sqrt(7sqrt(7sqrt(7)))=1-a log_(7)2 and log_(15)log_(15) sqrt(15sqrt(15sqrt(15sqrt(15))))=1-b log_(15)2 , then a+b=

If log_(7)log_(7) sqrt(7sqrt(7sqrt(7)))=1-a log_(7)2 and log_(15)log_(15) sqrt(15sqrt(15sqrt(15sqrt(15))))=1-b log_(15)2 , then a+b=