Home
Class 11
MATHS
If tanalpha=x/(x+1) and tanbeta=1/(2x+1)...

If `tanalpha=x/(x+1)` and `tanbeta=1/(2x+1)`, then `alpha+beta` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let tanalpha=a/(a+1) and tan beta=1/(2a+1) then alpha+beta is

If tanalpha=(m)/(m+1), tanbeta=(1)/(2m+1) then alpha+beta =

If tanalpha=m/(m+1) , tanbeta=1/(2m+1) prove that alpha+beta=pi/4

If tanalpha =(1)/(7) and tanbeta =(1)/(3) , then, cos2alpha is equal to

If tanalpha =(1)/(7) and tanbeta =(1)/(3) , then, cos2alpha is equal to

If tanalpha=1/7 and tanbeta=1/3 , then cos 2alpha=

If tanalpha=1/(1+2^(-x)) and tanbeta=1/(1+2^(x+1)), then write the value of alpha+beta lying in the interval (0,pi//2) .

If tanalpha=m/(m+1) and tanbeta=1/(2m+1) . Find the possible values of (alpha+beta)

If tanalpha=m/(m+1) and tanbeta=1/(2m+1) . Find the possible values of tan(alpha+beta)

If tanalpha=m/(m+1) and tanbeta=1/(2m+1) . Find the possible values of (alpha+beta)