Home
Class 12
MATHS
8x? + 8 log 8x8 + 8 dx (a) xx -8^@ +c (a...

8x? + 8 log 8x8 + 8 dx (a) xx -8^@ +c (a) x8-88 + c (6) **+8^@ + (b) x +84 +C © Slogx+ x1 (c) 8 log x + x lo

Promotional Banner

Similar Questions

Explore conceptually related problems

8x?+8log8x8+8dx(a)xx-8^(^^)@+c(a)x8-88+c(6)**+8^(^^)(b)x+84+C Slog x+x1 (c) 8log x+x lo

If log_(3) ( 3 + x) + log_(3) (8 - x) - log_(3) ( 9x - 8) = 2 - log_(3) 9, then x =

intx^(3) log x dx is equal to A) (x^(4) log x )/( 4) + C B) (x^(4))/( 8) ( log x - ( 4)/( x^(2)))+C C) (x^(4))/( 16) ( 4 log x -1) +C D) (x^(4))/( 16) ( 4 log x +1) + C

If -3/4=6/x , then x= (a)-8 (b) 4 (c)-4 (d) 8

If log_(4) x + log_(8)x^(2) + log_(16)x^(3) = (23)/(2) , then log_(x) 8 =

If the fourth term in the binomial expansion of ((2)/(x) + x^(log_(8) x))^(6) (x gt 0) is 20 xx 8^(7) , then the value of x is (A) 8^(-2) (B) 8^(3) (C) 8 (D) 8^(2)

The value of int_0^1(8 log(1+x))/(1+x^(2)) dx is a) πlog2 b) π/8log2 c) π/2log2 d) log2

If (log8)/(log2)=x then x=

8*sin(x/8)*cos(x/2)*cos(x/4)*cos(x/8)= .............. A) 8 sin x B) sin x C) cos x D) 8 cos x