Home
Class 11
MATHS
The gradient of the tangent line at the ...

The gradient of the tangent line at the point `(a cos alpha, a sin alpha)` to the circle `x^2 + y^2 = a^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Equation to the tangent at (a(1+cos alpha), a sin alpha) on the circle x^(2)+y^(2)-2ax=0 is

Show that the equation of the circle described on the chord x cos alpha + y sin alpha = p of the circle x^(2) + y^(2) = a^(2) as diameter is x^(2) + y^(2) - a^(2) - 2p (x cos alpha + y sin alpha - p) = 0

If the straight line y= x sin alpha + a sec alpha is a tangent to the circle x^(2) + y^(2) = a^(2) then-

If line x cos alpha + y sin alpha = p " touches circle " x^(2) + y^(2) =2ax then p =

The line x sin alpha- ycos alpha = a touches the circle x^(2) +y^(2) =a^(2) ,then

The circle on the chord x cos alpha + y sin alpha -p= 0 of the circle x^2 + y^2 - 2 = 0 as diameter is:

The line x sin alpha - y cos alpha =a touches the circle x ^(2) +y ^(2) =a ^(2), then,

If the line y cos alpha=x sin alpha+a cos alpha be a tangtnt to the circle x^(2)+y^(2)=a^(2) then

If the straight line represented by x cos alpha + y sin alpha = p intersect the circle x^2+y^2=a^2 at the points A and B , then show that the equation of the circle with AB as diameter is (x^2+y^2-a^2)-2p(xcos alpha+y sin alpha-p)=0