Home
Class 12
MATHS
If log(x^2+y^2)=2tan^(-1)(y/x), show tha...

If `log(x^2+y^2)=2tan^(-1)(y/x),` show that `(dy)/(dx)=(x+y)/(x-y)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If log(x^2+y^2)=2tan^(-1)(y/x) , then, show that dy/dx=(x+y)/(x-y)

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

If log (x^(2)+y^(2))=tan^(-1)((y)/(x)), then show that (dy)/(dx)=(x+y)/(x-y)

If log sqrt(x^2 + y^2) = tan^-1 (y//x) , then show that dy/dx = (x+y)/(x-y)

IF [log (x^2 + y^2) = 2 tan^-1 (y/x)] then show that , dy/dx = (x+y) /(x- y)

If logsqrt(x^(2)+y^(2))=tan^(-1)((x)/(y)) , then show that (dy)/(dx)=(y-x)/(y+x) .

If log sqrt(x^(2)+y^(2))=tan^(-1)((y)/(x)),then(dy)/(dx) is

If log (x^(2)+y^(2)) = 2 tan ^(-1) (x/y) " then show that " (dy)/(dx) = (y-x)/(y +x)