Home
Class 12
MATHS
lim(n rarr oo)(1+2+3+...+n)/(n^2+10)...

`lim_(n rarr oo)(1+2+3+...+n)/(n^2+10)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a = lim_(n rarr oo) (1+2+3+.....+n)/(n^(2))= , b = lim_(n rarr oo) (1^(2)+2^(2)+.....+n^(2))/(n^(3))= then

lim_(n rarr oo)2^(1/n)

lim_(n rarr oo) (1+2+3+…...+n)/(n^(2)), n in N is equal to :

lim_(n rarr oo)((1+2+3+...+n)/(n+2)-(n)/(2))

lim_(n rarr oo)(2^(3n))/(3^(2n))=

lim_(n rarr oo)(1-(2)/(n))^(n)

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (3n ^ (2)) =?

Find lim_ (n rarr oo) (n ^ (3) + a) (n + 1) ^ (3) a] ^ (- 1) (2 ^ (n + 1) + a) (2 ^ (n) + a) ^ (- 1)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)