Home
Class 12
MATHS
In the interval [0,1], the function x^(2...

In the interval `[0,1],` the function `x^(25)(1-x)^(75)` takes its maximum value at the point 0 (b) `1/4` (c) `1/2` (d) `1/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

On the interval [0,1] the function x^(25)(1-x)^(75) takes its maximum value at the point

In the interval [0,1], the function x^(25)(1-x)^(75) takes its maximum value at the point (a) 0 (b) 1/4 (c) 1/2 (d) 1/3

In the interval [0,1], the function x^(25)(1-x)^(75) takes its maximum value at the point (a) 0 (b) 1/4 (c) 1/2 (d) 1/3

In the interval [0,1] the function x^(25)(1-x)^(75) takes a maximum value at

On the interval [0,1] the function phi(x)=x^(1005)(1-x)^(1005) takes its maximum value at point

On the interval [0,1] the function f(x)=x^(1005)(1-x)^(1002) assumes maximum value equal to

If f(x)=1/(4x^2+2x+1) , then its maximum value is 4/3 (b) 2/3 (c) 1 (d) 3/4

It is given that at x = 1, the function x^(4)-62x^(2)+ax+9 attains its maximum value, on the interval [0, 2]. Find the value of a.