Home
Class 11
MATHS
If a, b, c are positive real numbers, th...

If `a, b, c` are positive real numbers, then `1/(log_a bc +1)+ 1/(log_b ca +1) + 1/(log_c ab+1) = `

Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c are positive real numbers, then (1)/("log"_(ab)abc) + (1)/("log"_(bc)abc) + (1)/("log"_(ca)abc) =

If a, b, c are positive real numbers, then (1)/("log"_(ab)abc) + (1)/("log"_(bc)abc) + (1)/("log"_(ca)abc) =

If a, b, c are positive real numbers then (1)/("1+log"_(a)bc) + (1)/("1+log"_(b)ca) +(1)/("1+log"_(c)ab)=

Evaluate : (1)/(log_(a)bc + 1) + (1)/(log_(b)ca + 1) + (1)/(log_(c) ab + 1)

Show that (1)/(log_(a)bc+1)+(1)/(log_(b)ca+1)+(1)/(log_(c )ab+1)=1

If a, b, c are distinct positive real numbers each different from unity such that (log_b a.log_c a -log_a a) + (log_a b.log_c b-logb_ b) + (log_a c.log_b c - log_c c) = 0, then prove that abc = 1.

Prove that 1/(log_(a/b) x)+1/(log_(b/c) x)+1/(log_(c/a) x)=0

(1/(log_(a)bc+1) + 1/(log_(b) ac +1) + 1/(log_(c)ab+1)+1) is equal to: