Home
Class 11
MATHS
If the two circle x^2 + y^2 + 2 g1 x + 2...

If the two circle `x^2 + y^2 + 2 g1 x + 2 f1 y = 0 ` & `x^2 + y^2 + 2 g2 x + 2 f2 y = 0` touch each other than: (A) f1 g1 = f2 g2 (B) `f1/g1`= `f2/g2` (C) f1 f2 = g1 g2 (D) f1+ f2 = g1 + g2

Promotional Banner

Similar Questions

Explore conceptually related problems

If two circle x^(2)+y^(2)+2gx +2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other then f'g =fg'.

If the two circles,x^(2)+y^(2)+2g_(1)x+2f_(1)y=0delta x^(2)+y^(2)+2g_(2)x+2f_(2)y=0 touch each other then (1)f_(1)g_(1)=f_(2)g_(2)(2)(f_(1))/(g_(1))=(f_(2))/(g_(2))(3)f_(1)f_(2)=g_(1)g_(2)(4) none of these

If f ( x) = cos^(-1) ( cos ( x + 1) ) " and " g(x) = sin ^(-1) ( sin (x + 2)) , then f(1) + g (1) = ( pi -1) f (1) gt g(1) f(2) gt g (2) f(2) lt g (2)

Let f and g be two real values functions defined by f ( x ) = x + 1 and g ( x ) = 2 x − 3 . Find 1) f + g , 2) f − g , 3) f / g

If the circle x^(2)+y^(2)+2gx+2fy+c=0 bisects the circumference of the circle x^(2)+y^(2)+2g'x+2f'y+c'=0 then prove that 2g'(g-g')+2f'(f-f')=c-c'

Show that the condition that the circle x^2+y^2+2g_1x+2f_1y+c_1=0 bisects the circumference of the circle x^2+y^2+2g_2x+2f_2y+c_2=0 is 2(g_1-g_2)g_2+2(f_1-f_2)f_2=c_1-c_2

Show that the condition that the circle x^2+y^2+2g_1x+2f_1y+c_1=0 bisects the circumference of the circle x^2+y^2+2g_2x+2f_2y+c_2=0 is 2(g_1-g_2)g_2+2(f_1-f_2)f_2=c_1-c_2