Home
Class 12
MATHS
Consider Delta ABC with A(vec a), B(vec ...

Consider `Delta ABC` with `A(vec a), B(vec b) and C(vec c)`. If `vec b.(vec a + vec c) = vec b.vec b + vec a. vec c` ; `| vec b - vec a| = 3 ; |vec c - vec b| = 4`, then the angle between the median `vec AM and vec AD` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider Delta ABC with A = (vec a); B = ([vec bvec b]) and C = (vec c). If vec b * (vec a + vec c) = vec b * vec b + vec a * vec c; | vec b-vec a | = 3; | vec c-vec b | = 4 then the angle between the medians Avec M and Bvec D is

[vec a + vec b vec b + vec c vec c + vec a] =

Suppose vec a + vec b + vec c = 0, |vec a| = 3, |vec b| = 5, |vec c| = 7 , then the angle between vec a and vec b is

vec a + vec b + vec c = vec 0, | vec a | = 3, | vec b | = 5, | vec c | = 7 then angle between vec a and vec b is

If vec a + vec b + vec c = 0 and |vec a|= 3, |vec b| = 4 and |vec c| = sqrt37 , then the angle between vec a and vec b is

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

If vec a + vec b = vec c and | vec a | = | vec b | = | vec c | find the angle between vec a and vec b

If |vec a|+|vec b|=|vec c| and vec a+vec b=vec c, then find the angle between vec a and vec b

If | vec a|+| vec b|=| vec c| and vec a+ vec b= vec c , then find the angle between vec a and vec bdot