Home
Class 12
MATHS
Given a parallelogram OACB. The lengths ...

Given a parallelogram `OACB`. The lengths of the vectors `vec (OA)`, `vec (OB)` & `vec (AB)` are `a`, `b` & `c` respectively. The scalar product of the vectors `vec (OC)` & `vec (OB)` is
(A) `(a^2-3b^2+c^2)/2`
(B) `(3a^2+b^2-c^2)/2`
(C) `(3a^2-b^2+c^2)/2`
(D) `(a^2+3b^2-c^2)/2`

Text Solution

Verified by Experts

With the given details, we can create a diagram.
Please refer to video for the diagram.
Here,` vec(OC).vec(OB) =|vec(OB)||vec(OC)|costheta`
`=> vec(OC).vec(OB) =b|vec(OC)|costheta ->(1)`
In `Delta AOB`, using cosine law,
`c^2 = a^2+b^2-2abcos(theta+alpha)->(2)`
In `Delta AOC`, using cosine law,
`OC^2 = a^2+b^2-2abcos(pi-(theta+alpha))`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a, vec b and vec c are unit coplanar vectors then the scalar triple product [2 vec a - vec b 2 vec b - vec c 2 vec c - vec a]

If the position vectors of A, B, C, D are a, b, 2a + 3b, a - 2b respectively, then vec(A)C, vec(D)B, vec(B)A, vec(D)A are

If A,B,C,D are the points with position vectors vec a , vec b , 3 vec a+ 2 vec b and vec a- 2 vec b respectively , show that vec AC = 2 vec a + 2 vec b and vec DB= 3 vec b - a .

Show that the points A,B,C with position vectors 2vec a+3vec b+5vec c,vec a+2vec b+3vec c and 7vec a-vec c respectively,are collinear.

If vec a , vec ba n d vec c are unit coplanar vectors, then the scalar triple product [2 vec a- vec b2 vec b- vec c2 vec c- vec a] is 0 b. 1 c. -sqrt(3) d. sqrt(3)

If vec a , vec ba n d vec c are unit coplanar vectors, then the scalar triple product [2 vec a- vec b2 vec b- vec c2 vec c- vec a] is a. 0 b. 1 c. -sqrt(3) d. sqrt(3)

If vec a , vec ba n d vec c are unit coplanar vectors, then the scalar triple product [2 vec a- vec b2 vec b- vec c2 vec c- vec a] is 0 b. 1 c. -sqrt(3) d. sqrt(3)

If vec a,vec b and vec c are unit coplanar vectors, then the scalar triple product [2vec a-vec b2vec b-vec c2vec c-vec a] is 0 b.1 c.-sqrt(3)d.sqrt(3)

Show that the vectors 2 vec a- vec b+3 vec c , vec a+ vec b-2 vec ca n d vec a+ vec b-3 vec c are non-coplanar vectors (where vec a , vec b , vec c are non-coplanar vectors)