Home
Class 12
MATHS
vec a and vec b are mutually perpendicul...

`vec a` and `vec b` are mutually perpendicular unit vectors. `vec r` is a vector satisfying `vec r *vec a=0`, `vec r *vec b=1` and `[vec r  vec a   vec b]=1`, then `vec r` is
(A) `vec a +(vec a × vec b)`
(B) `vec b +(vec a × vec b)`
(C) `vec a +vec b × (vec a × vec b)`
(D) `vec a - vec b +(vec a × vec b)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec b is not perpendicular to vec c , then find the vector vec r satisfying the equation vec rxx vec b= vec axx vec b and vec r. vec c=0.

If vec b is not perpendicular to vec c , then find the vector vec r satisfying the equyation vec rxx vec b= vec axx vec b and vec r. vec c=0.

If vec a and vec b are not perpendicular to each other and vec r xx vec a = vec b xx vec a, vec r. vec c = vec 0 then vec r =

If vec a is a unit vector, vec a xxvec r = vec b, vec a * vec r = c, vec a * vec b = 0, then vec r is equal to

If vec a is a unit vector, vec a xxvec r = vec b, vec a * vec r = c, vec a * vec b = 0 then vec r is equal to

If vec a + vec b + vec c = 0, prove that (vec a xx vec b) = (vec b xx vec c) = (vec c xx vec a)

If vec(a), vec(b) and vec(c ) are mutually perpendicular unit vectors and vec(a)xx vec(b)=vec(c ) , show that vec(b)=vec(c )xx vec(a) and vec(a)=vec(b)xx vec(c ) .

Let vec r be a unit vector satisfying vec rxx vec a= vec b ,w h e r e| vec a|=3a n d| vec b|=2. Then vec r=2/3( vec a+ vec axx vec b) b. vec r=1/3( vec a+ vec axx vec b c. vec r=2/3( vec a- vec axx vec b d. vec r=1/3(- vec a+ vec axx vec b

If vec r. vec a=0, vec r. vec b=1 \ and \ [[ vec r ,vec a, vec b]]=1, vec adot vec b!=0,( vec adot vec b)^2-| vec a|^2| vec b|^2=-1, then find vec r in terms of vec a \ and \ vec b .