Home
Class 12
MATHS
Let f(x)={(0.1)^(3[x])}. (where [.] deno...

Let `f(x)={(0.1)^(3[x])}`. (where [.] denotes greatest integer function and denotes fractional part). If `f(x + T) =f(x) AA x in 0`, where T is a fixed positive number then the least x value of T is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={(0.1)^(3[x])}. (where [.] denotes greatest integer function and denotes fractional part).If f(x+T)=f(x)AA x in0 where T is a fixed positive number then the least x value of T is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)