Home
Class 10
MATHS
If alpha, beta, gamma are the zeroes of ...

If `alpha, beta, gamma` are the zeroes of `p(x)=6x^3+3x^2-5x+1` then evaluate `alpha^(-1) + beta^(-1)+gamma^(-1).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, and gamma are the zeros of 2x^(3) - 4x^(2) + 6x +9 , find value of alpha ^(-1) + beta^(-1) + gamma^(-1)

If alpha, beta, gamma are zeroes of polynomial 6x^(3)+3x^(2)-5x+1 , then find the value of alpha^(-1)+beta^(-1)+gamma^(-1) .

If alpha, beta, gamma are zeroes of polynomial 6x^(3)+3x^(2)-5x+1 , then find the value of alpha^(-1)+beta^(-1)+gamma^(-1) .

If alpha,beta,gamma are the zeroes of 3x^3-5x^2-11x-3 , then alpha+beta+gamma =

If alpha, beta, gamma are the zeros of the polynomial p(x) = 6x^(3)+3x^(2)-5x+1, find the value of (1/alpha+1/beta+1/gamma).

If alpha, beta , gamma are the zeros of the polynomial x^(3)-6x^(2)-x+30 then the value of (alpha beta+beta gamma+gamma alpha) is

If alpha beta gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha , beta , gamma are the roots of x^3 -3x +1=0 then the equation whose roots are alpha - (1)/( beta gamma) , beta - (1)/( gamma alpha ) , gamma - (1)/( alpha beta ) is

If alpha , beta , gamma are the roots of x^3 -3x +1=0 then the equation whose roots are alpha - (1)/( beta gamma) , beta - (1)/( gamma alpha ) , gamma - (1)/( alpha beta ) is