Home
Class 12
MATHS
Let I =int(a)^(b) (x^(4)-2x^(2))dx. If I...

Let `I =int_(a)^(b) (x^(4)-2x^(2))dx`. If I is maximum then the ordered pair (a,b) is :

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I=int_(a)^(b)(x^(4)-2x^(2))dx . If I is minimum then the ordered pair (a, b) is:

Let I=int_(a)^(b)(x^(4)-2x^(2))dx . If I is minimum then the ordered pair (a,b) is (-sqrtk,sqrtl) . The value of (k+l) is _________.

Let I=int_(a)^(b) (x^4-2x^2)dx . If is minimum, then the ordered pair (a, b) is

Let I=int_(a)^(b) (x^4-2x^2)dx . If is minimum, then the ordered pair (a, b) is

Let I=int_(a)^(b) (x^4-2x^2)dx . If is minimum, then the ordered pair (a, b) is

I=int_(0)^(2)x sqrt(4-x^(2))dx

If int_(a)^(b)(2+x-x^(2))dx is maximum,then (a+b) is equal to

I=int_(0)^(4)(x^(2)+2x+4)dx

Let I = int_(1)^(3)sqrt(x^(4)+x^(2)) , dx then

Let I = int_(1)^(3)sqrt(x^(4)+x^(2)) , dx then