Home
Class 12
MATHS
The area enclosed by the curvesy= sinx+c...

The area enclosed by the curves`y= sinx+cosx and y = | cosx-sin x |` over the interval `[0,pi/2]`

Promotional Banner

Similar Questions

Explore conceptually related problems

The area enclosed by the curves y=sin x + cos x and y |cos x -sin x| over the interval [0,pi//2] is :

The area enclosed by the curves: y=sin x+ cos x and y=cos x- sin x| over the interval [0,pi/2] is:

The area exclosed by the curves y=sinx+cosx and y=|cosx-sinx| over the interval [0,(pi)/(2)] is

The area enclosed by the curves y=sinx+cosx and y=|cosx−sinx| over the interval [0,pi/2] is (a) 4(sqrt2-1) (b) 2sqrt2(sqrt2-1) (c) 2(sqrt2+1) (d) 2sqrt2(sqrt2+1)

The area enclosed by the curve y=sinx+cosxa n dy=|cosx-sinx| over the interval [0,pi/2] is (a)4(sqrt(2)-2) (b) 2sqrt(2) ( sqrt(2) -1) (c)2(sqrt(2) +1) (d) 2sqrt(2)(sqrt(2)+1)

The area enclosed by the curve y=sinx+cosxa n dy=|cosx-sinx| over the interval [0,pi/2] is (a)4(sqrt(2)-2) (b) 2sqrt(2) ( sqrt(2) -1) (c)2(sqrt(2) +1) (d) 2sqrt(2)(sqrt(2)+1)

The area enclosed by the curve y=sinx+cosxa n dy=|cosx-sinx| over the interval [0,pi/2] is (a)4(sqrt(2)-2) (b) 2sqrt(2) ( sqrt(2) -1) (c)2(sqrt(2) +1) (d) 2sqrt(2)(sqrt(2)+1)