Home
Class 8
MATHS
If |z^2-1|=|z|^2+1, then z lies on (a...

If `|z^2-1|=|z|^2+1`, then `z` lies on
(a) a circle
(b) the imaginary axis
(c) the real axis
(d) an ellipse

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1z^(2)-1|=|z|^(2)+1, then z lies on (1)An ellipse (3)A circle 89.(2) The imaginary axis (4) The real axis

If |z^2-1|=|z|^2+1 , then z lies on (a) The Real axis (b)The imaginary axis (c)A circle (d)An ellipse

If |z^(2)-1|=|z|^(2)+1, then show that z lies on the imaginary axis.

If |z^2-1|=|z|^2+1 , then show that z lies on the imaginary axis.

If the complex number z=x+i y satisfies the condition |z+1|=1, then z lies on (a)x axis (b) circle with centre (-1,0) and radius 1 (c)y-axis (d) none of these

If the complex number z=x+i y satisfies the condition |z+1|=1, then z lies on (a)x axis (b) circle with centre(-1,0) and radius1 (c)y-axis (d) none of these

If z=x+iy and w=(1-iz)/(z-i) , then |w|=1 implies that in the complex plane (A) z lies on imaginary axis (B) z lies on real axis (C) z lies on unit circle (D) None of these

If z=x+iy and w=(1-iz)/(z-i) , then |w|=1 implies that in the complex plane (A) z lies on imaginary axis (B) z lies on real axis (C) z lies on unit circle (D) None of these

If |z_1|=|z_2| and arg((z_1)/(z_2))=pi , then z_1+z_2 is equal to (a) 0 (b) purely imaginary (c) purely real (d) none of these

If z=x+iy and w=(1-iz)/(z-i), then |w|=1 implies that in the complex plane (A)z lies on imaginary axis (B) z lies on real axis (C)z lies on unit circle (D) None of these