Home
Class 8
MATHS
If |z^2-1|=|z|^2+1, then z lies on (a)...

If `|z^2-1|=|z|^2+1`, then `z` lies on (a) a circle (b) the imaginary axis (c) the real axis (d) an ellipse

Text Solution

Verified by Experts

`|Z^2-1|=|Z^2|-1`
`|(Z^2-1)^2|=(|Z^2|-1)^2`
`(Z^2-1)(Z^2-1)=(1+ZZ)^2`
`-(Z^2-2^2)=2*Z*Z`
Re(Z)=0
Z lies on the imaginary axis.
Promotional Banner

Similar Questions

Explore conceptually related problems

If 1z^(2)-1|=|z|^(2)+1, then z lies on (1)An ellipse (3)A circle 89.(2) The imaginary axis (4) The real axis

If |z^2-1|=|z|^2+1 , then z lies on (a) The Real axis (b)The imaginary axis (c)A circle (d)An ellipse

If |z^(2)-1|=|z|^(2)+1, then show that z lies on the imaginary axis.

If |z^2-1|=|z|^2+1 , then show that z lies on the imaginary axis.

If the complex number z=x+i y satisfies the condition |z+1|=1, then z lies on (a)x axis (b) circle with centre(-1,0) and radius1 (c)y-axis (d) none of these

If the complex number z=x+i y satisfies the condition |z+1|=1, then z lies on (a)x axis (b) circle with centre (-1,0) and radius 1 (c)y-axis (d) none of these

If z=x+iy and w=(1-iz)/(z-i) , then |w|=1 implies that in the complex plane (A) z lies on imaginary axis (B) z lies on real axis (C) z lies on unit circle (D) None of these

If z=x+iy and w=(1-iz)/(z-i) , then |w|=1 implies that in the complex plane (A) z lies on imaginary axis (B) z lies on real axis (C) z lies on unit circle (D) None of these

If |z_1|=|z_2| and arg((z_1)/(z_2))=pi , then z_1+z_2 is equal to (a) 0 (b) purely imaginary (c) purely real (d) none of these

If |z + 1| lt |z - 1| , then z lies a)on the X-axis b)on the Y-axis c)in the region x lt 0 d)in the region y gt 0