Home
Class 11
MATHS
The value of F(x)=6cosxsqrt(1+tan^2x) + ...

The value of `F(x)=6cosxsqrt(1+tan^2x) + 2sinxsqrt(1+cot^2x)` where `x in (0,2pi)-{pi,pi/2,(3pi)/2}` may be

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of tan(pi+x)tan(pi-x)cot^(2)x is

The minimum value of the function f(x)=2tan x+3cot x where x in(0 ,(pi)/(2)) is

The minimum value of the function f(x)=2tan x+3cot x where x in(0, (pi)/(2)) is

The minimum value of the function f(x)=2tan x+3cot x where x in(0 (pi)/(2)) is

The value of cos ((3pi)/2 + x)cos (2pi + x){cot ((3pi)/2 - x) + cot (2pi + x)} is-

The range of f(x)=sin^(-1)(sqrt(x^(2)+x+1)) is (0,(pi)/(2))(b)(0,(pi)/(3))(c)((pi)/(3),(pi)/(2)) (d) [(pi)/(6),(pi)/(3)]

f(x)=(s i x)/(sqrt(1+tan^2x))+(cos x)/(sqrt(1+cot^2x)) is constant in which of following interval a. \ (0,\ pi/2) b. (pi/2,\ pi) c. (pi,\ ((3pi)/2) d. ((3pi)/2,2pi)

f(x)=(sin x)/(sqrt(1+tan^2x))+(cos x)/(sqrt(1+cot^2x)) is constant in which of following interval a. \ (0,\ pi/2) b. (pi/2,\ pi) c. (pi,\ (3pi)/2) d. ((3pi)/2,2pi)