Home
Class 11
MATHS
If tan( pi/4 + x). tan(pi/4 - x) = 1 , t...

If `tan( pi/4 + x). tan(pi/4 - x) = 1` , then x equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : tan(pi/4+x)+tan(pi/4-x)=4

Solve: tan(pi/4+x)+tan(pi/4-x)=2

(tan ((pi)/(4) +x))/( tan ((pi)/(4) -x ))= ((1 + tan x )/( 1- tan x )) ^(2)

(tan ((pi)/(4) +x))/( tan ((pi)/(4) -x ))= ((1 + tan x )/( 1- tan x )) ^(2)

(tan ((pi)/(4) +4))/( tan ((pi)/(4) -x ))= ((1 + tan x )/( 1- tan x )) ^(2)

(tan ((pi)/(4) +4))/( tan ((pi)/(4) -x ))= ((1 + tan x )/( 1- tan x )) ^(2)

IF 0 lt x lt (pi)/(2) then tan (pi/4 +x) + tan "(pi/4-x) is equal to

Prove that (tan(pi/4+x))/(tan(pi/4-x))=((1+t a n x)/(1-t a n x))^2

" tan " ((pi)/(4) -x) =(1 - tan x)/( 1+ tan x)

If tan^(-1)x=(pi)/(4)-tan^(-1)((1)/(3)) , then x is