Home
Class 11
MATHS
The value of cosA cos2A cos2^2A......cos...

The value of `cosA cos2A cos2^2A......cos(2^(n-1)A)`, where `A in R` may be . (A) 1 (B) `-1` (C) 2 (D) `sin2^n A/(2^n sinA)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos A cos 2A cos 2^2 A cos 2^3 A........ cos 2^(n-1) A= (sin 2^n A)/(2^n sinA) .

Prove that cos A cos 2A cos 2^(2) A cos 2^(3)A....cos 2^(n-1) A=(sin 2^(n) A)/(2^(n) sin A)

cos x*cos2x*cos4x......cos(2^(n-1)x)=(sin2^(n)x)/(2^(n)sin x)AA n in N

sin (n + 1) A * sin (n + 2) A + cos (n + 1) A * cos (n + 2) A = cos A

Evaluate (sinA(1-cosA+1+cosA))/(1-cos^2A)

Prove that: cos A cos 2A cos 2^(2)A cos 2^(3)A….....cos 2^(n-1)A=("sin" 2^(n)A)/(2^(n)"sin"A) .

Solve the equation sin^(2n-1)x+2cos^(2n-1)x=2 ,where n in N .

cos (n + 1) A cos (n + 2) A + sin (n + 1) A sin (n + 2) A =

(sin (n +1) A +2 sin n A + sin ( n -1) A )/( cos (n +1) A - cos ( n -1) A ) =