Home
Class 11
MATHS
The angles A, B, C of a triangle ABC sat...

The angles A, B, C of a triangle ABC satisfy `4cosAcosB + sin2A + sin2B + sin2C = 4`, Then which of the following statements is/are correct? (1) The triangle ABC is right angled (2) The triangle ABC is isosceles (3) The triangle ABC is neither isosceles nor right angled (4) The triangle ABC is equilateral

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC,right angled at B, then

The triangle ABC of which the angles A, B, C satisfy cos A =(sin B)/(2 sin C) is-

In triangle ABC, a sin A= b sin B. Show that the triangle is isosceles.

If in triangle ABC,a^(2)+b^(2)+c^(2)-ac-sqrt(3)ab=0 ,then triangle is necessarily. 1) isosceles 2) right angled 3) obtuse angled 4) equilateral

In a Delta ABC, if 4cos A cos B+sin2A+sin2B+sin2C=4 then triangle ABC is

If sinA=sin^2Band2cos^2A=3cos^2B then the triangle ABC is right angled (b) obtuse angled (c)isosceles (d) equilateral

If in triangle ABC , (a^2+b^2)sin(A-B)=(a^2-b^2)sin(A+B) ,show that the triangle is either'isosceles or right angled.

In /_\ABC ,if (a^2+b^2)sin(A-B)=(a^2-b^2)sin (A+B) ,show that the triangle is either isosceles or right angled.

In figure ABC is an isosceles triangle , right angled at C . Therefore