Home
Class 11
MATHS
If the sides of two sides of a right ang...

If the sides of two sides of a right angled triangle are `(cos2alpha+cos2beta+2cos(alpha+beta))` and `(sin2alpha+sin2beta+2sin(alpha+beta))` then find the hypotenuse

Promotional Banner

Similar Questions

Explore conceptually related problems

If the sides of a right angled triangle are {cos 2 alpha + cos 2 beta + 2 cos (alpha+beta)} and {sin 2 alpha+sin 2 beta + 2 sin (alpha+beta)} then the length of the hypotneuse is

If the sides of a right angled triangle are {cos 2 alpha + cos 2 beta + 2 cos (alpha+beta)} and {sin 2 alpha+sin 2 beta + 2 sin (alpha+beta)} then the length of the hypotneuse is

If cos(alpha+beta)=0 then sin^(2)alpha+sin^(2)beta

2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)=

Simplify 2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

2 sin ^(2) beta + 4 cos (alpha + beta) sin alpha sin beta + cos 2 (alpha + beta )=

Prove that: cos2 alpha cos2 beta+sin^(2)(alpha-beta)-sin^(2)(alpha+beta)=cos2(alpha+beta)