Home
Class 12
MATHS
The value of (x^2-(y-z)^2)/((x+z)^2-y^2)...

The value of `(x^2-(y-z)^2)/((x+z)^2-y^2) + (y^2-(x-z)^2)/((x+y)^2-z^2) + (z^2-(x-y)^2)/((y+z)^2-x^2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

(x-y-z)^(2)-(x+y+z)^(2) is equal to

The value of (x^(2)-(y-z)^(2))/((x+z)^(2)-y^(2))+(y^(2)-(x-z)^(2))/((x+y)^(2)-z^(2))+(z^(2)-(x-y)^(2))/((y+z)^(2)-x^(2)) is -1(b)0(c)1(d) None of these

"The value of "(x^(2))/((x-y)(x-z))+(y^(2))/((y-z)(y-x))+(z^(2))/((z-x)(z-y))" is : "

The product (x+y+z)[(x-y)^(2)+(y-z)^(2)+(z-x)^(2)] is equal to

Simplify (y-z)^2(z-y)+(z-x)^2(x-z)+(x-y)^2(y-x)+3(y-z)(z-x)(x-y)

x(y^(2)-z^(2))+y(z^(2)-x^(2))+z(x^(2)-y^(2)) is divisible by

Prove that |x^2x^2-(y-z)^2y z y^2y^2-(z-x)^2z x z^2z^2-(x-y)^2x y|=(x-y)(y-z)(z-x)(x+y+z)(x^2+y^2+z^2)dot