Home
Class 12
MATHS
If f(x) = {{:(|x|",", "for",,0 lt |x| le...

If `f(x) = {{:(|x|",", "for",,0 lt |x| le 2), (1",", "for,, x =0):}`. Then, at x = 0, ` f ` has

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={{:(|x|,"if", 0 lt |x| le2),(1,"if", x=0):} then at x=0 has

If f(x)={:{(1-x", for " 0 lt x le 1), ( 1/2 ", for " x=0):} , then in [0, 1]

If f(x)={:{(x", for " 0 le x lt 1/2),(1-x", for " 1/2 le x lt 1):} , then

If f(x)={:{(x", for " 0 le x lt 1/2),(1-x", for " 1/2 le x lt 1):} , then

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

If {(f(x) = 1-x), (for 0 lt x le 1),(= k , for x = 0)} is continuous at x = 0, then k =

If f is defined by f (x) = {:{ (x , " for " 0 le x lt 1) , ( 2 -x , " for " x le 1 ) :} then at x =1

Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le x,"for",0 le x le 1),(3-x",",1 lt x le 2,,):} Then, g(x) in [0, 2] is

Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le x,"for",0 le x le 1),(3-x",",1 lt x le 2,,):} Then, g(x) in [0, 2] is