Home
Class 11
MATHS
Number of values of x satisfing the equa...

Number of values of x satisfing the equation `x^2= |x|^(log_5 (x^2+1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The total number of integral value of x satisfying the equation x ^(log_(3)x ^(2))-10=1 //x ^(2) is

Number of real values of x satisfying the equation log_(2)(x^(2)-x)*log_(2)((x-1)/(x))+(log_(2)x)^(2)=4 is (a)0(b)2(c)3(d)7

Number of values of x satisfying the equation log_(2)(sin x)+log_((1)/(2))(-cos x)=0 in the interval (-pi,pi), is equal to -

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

The number of values of x satisfying the equation log_(2)(log_(3)(log_(2)x)))>=sqrt(8-x)+sqrt(x-8) is :

The set of real values of x satisfying the equation |x-1|^(log_(3)(x^(2))-2log_(x)9)=(x-1)^(7)

The set of real values of x satisfying the equation |x-1|^(log_3(x^2)-2log_x(9))=(x-1)^7

The number of real values of x satisfying the equation log_(5)[(2+sqrt(5))^(x)-(sqrt(5)2)^(x)]=(1)/(2)-3log_((1)/(5))2