Home
Class 12
MATHS
lim(xto0) (sinx^n)/((sinx)^m), (mltn) is...

`lim_(xto0) (sinx^n)/((sinx)^m), (mltn)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (sinx^n)/((sinx)^m), (mltn) is equal to

lim_(x->0) (sinx^n)/((sinx)^m),(mltn), is equal to (a) 1 (b) 0 (c) n//m (d) none of these

lim_(x->0) (sinx^n)/((sinx)^m),(mltn), is equal to (a) 1 (b) 0 (c) n//m (d) none of these

lim_(x->0)(sinx)^n/(sinx)^m,(mltn), is equal to (a)1 (b) 0 (c) n//m (d) none of these

lim_(xto0)(2"arc"sinx)/(3x)

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)xg(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

lim_(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

lim_(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to