Home
Class 12
MATHS
("lim")(xvecpi/2)(a^(cotx)-a^(cosx))/(co...

`("lim")_(xvecpi/2)(a^(cotx)-a^(cosx))/(cotx-cosx)i se q u a lto` `ln a` (b) a (c) `lna/2` (d) does not exist

Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(x to pi//2)(a^(cotx)-a^(cosx))/(cotx-cosx)=

lim_(xrarrpi//2)(a^(cotx)-a^cosx)/(cotx-cosx)a gt 0 is equal to

lim_(xrarrpi//2)(a^(cotx)-a^cosx)/(cotx-cosx)a gt 0 is equal to

lim_(x rarr pi/2) (a^(cotx)-a^(cosx))/(cotx-cosx), a gt 0 is equal to

Lt_(xrarr(pi)/(2))(a^cotx -a^cosx)/(cotx-cosx),agt0

Solve the limit ; lim_(xto pi//2)(a^(cotx)-a^(cosx))/(cotx-cosx) is equal to

Evaluate : ("lim")_(xvecpi/4)(1-cot^3x)/(2-cotx-cot^3x)

Evaluate: ("lim")_(xvecpi/4)(sqrt(2)cosx-1)/(cotx-1)

("lim")_(xvec0)(x^4(cot^4x-cot^2x+1)/((tan^4x-tan^2x+1)i se q u a lto 1 (b) 0 (c) 2 (d) none of these

("lim")_(xvec0)("cos"(tanx)-cosx)/(x^4)i se q u a lto 1/6 (b) -1/3 (c) 1/2 (d) 1