Home
Class 11
MATHS
x^6+x^4+x^2+1, when x=(1+i)/sqrt(2)...

`x^6+x^4+x^2+1`, when `x=(1+i)/sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following: x^(6)+x^(4)+x62=1, when x=(1+i)/(sqrt(2))

Evaluate the following: x^6+x^4+x^2+1,\ w h e n\ x=(1+i)/(sqrt(2))

Evaluate the following: x^(4)=4x^(3)+6x^(2)+4x+9, when x=-1+i sqrt(2)

Find the value of x ^(3) - x ^(2) + 2x + 10 when x = 1 + sqrt3 i

If x=5+2sqrt(6), then sqrt((x)/(2))-(1)/(sqrt(2x))= (a) 1 (b) 2 (c) 3 (d) 4

If x+sqrt(x^(2)-1)+(1)/(x+sqrt(x^(2)+1))=20 then x^(2)+sqrt(x^(4)-1)+(1)/(x^(2)+sqrt(x^(4)-1))=

The no. of terms in (x + sqrt(x^2 - 1))^6 + (x -sqrt(x^2 - 1))^6

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C