Home
Class 11
MATHS
C1/C0+2C2/C1+3C3/C2+............+nCn/C(n...

`C_1/C_0+2C_2/C_1+3C_3/C_2+............+nC_n/C_(n-1)=(n(n+1))/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let c_r denote the binomial coefficient "^nC_r Hence, show that C_1/C_0+2C_2/C_1+3.C_3/C_2+...+n.C_n/C_(n-1)=(n(n+1))/2

C_1/C_0 + (2C_2)/C_1 + (3C_3)/C_2 + .... (nC_n)/C_(n-1) is

Show that: C_1/C_0 + 2 C_2/C_1 + 3 C_3/C_2 + .... + n C_n/(C_n -1) = (n(n+1))/2

Prove that C_1/C_0+(2c_(2))/C_1+(3C_3)/(C_2)+......+(n.C_n)/(C_(n-1))=(n(n+1))/2

2.(C_2)/(C_1)+3.(C_3)/(C_2)+…...+n. (C_n)/(C_(n-1))=

(C_1)/(C_0)+2. (C_2)/(C_1)+3. (C_3)/(C_2)+….+n.(C_n)/(C_(n-1))=

Prove that (C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n) = (C_0C_1C_2.....C_(n-1)(n+1)^n)/(n!)

(C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n)= (C_0C_1C_2.....C_(n-1) (n+1)^n)/(n!)

Prove that (C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n) = (C_0C_1C_2.....C_(n-1)(n+1)^n)/(n!)

Prove that (C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n) = (C_0C_1C_2.....C_(n-1)(n+1)^n)/(n!)