Home
Class 12
MATHS
A function y=f (x) satisfies the differe...

A function y=f (x) satisfies the differential equation `f(x) sin 2x-cos x+(1 + sin^2x)f'(x)= 0` with initial condition `y(0)=0`. The value of `f(pi/6)` is equal to (A) `1/5` (B) `3/5` (C) `4/5` (D) `2/5`

Promotional Banner

Similar Questions

Explore conceptually related problems

A function y-f (x) satisfies the differential equation f (x) sin 2x - cos x+(1+ sin ^(2)x) f'(x) =0 with f (0) =0. The value of f ((pi)/(6)) equals to :

A function y=f(x) satisfies A function y=f(x) satisfies f" (x)= -1/x^2 - pi^2 sin(pix) ; f'(2) = pi+1/2 and f(1)=0 . The value of f(1/2) then

A function y = f(x) satisfies the condition f(x+(1)/x) =x^(2)+1/(x^2)(x ne 0) then f(x) = ........

A real valued function f(x) satisfies the functional equation f(x-y) = f(x) f(y) - f(a-x) f(a+y) , where a is a given constant and f(0)=1 , f(2a-x) =?

A real valued function f(x) satisfies the functional equation f(x-y) = f(x) f(y) - f(a-x) f(a+y) , where a is a given constant and f(0)=1 , f(2a-x) =?

Let f be a differentiable function satisfying f(x+2y)=2yf(x)+xf(y)-3xy+1 AA x , y in R such that f'(0)=1 ,then value of f(8) is equal

A function y=f(x) satisfying f'(x)=x^(-(3)/(2)),f'(4)=2 and f(0)=0 is

If f'(x)=3x^(2)sin x-x cos x x!=0 f(0)=0 then the value of f((1)/(pi)) is