Home
Class 12
MATHS
Let y'(x)+g'(x)/g(x) y(x) = g'(x)/(1+(g(...

Let `y'(x)+g'(x)/g(x) y(x) = g'(x)/(1+(g(x))^2)` where `f'(x)` denotes `d(f(x))/d(x)` and g(x) is given non constant differentiable function on R. If g(1) = y(1) =1 and `g(e) =sqrt(2e-1)` then y(e) equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=e^(x) and g(x)=f(x)+f^(-1) , what does g(2) equal?

Let f(x) = e^(x)g(x) , g(0)=2 and g (0)=1 , then find f'(0) .

If the function f(x) = x^3 + e^(x/2) and g(x) =f^-1(x) , then the value of g'(1) is

Let f(x), g(x) be differentiable functions and f(1) = g(1) = 2, then : lim_(x rarr 1) (f(1) g(x) - f(x) g(1) - f(1) + g(1))/(g(x) - f(x)) equals :

If the function f(x) = 2+x^2-e^x and g(x) = f^(-1)(x) , then the value of |g^'(1)|/4 equals

If the function f(x)= x^(3)+e^(x/2) and g(x) = f^(-1)(x) then the value of g^(')(1) is

Let f(x+y)=f(x)f(y) and f(x) = 1 + (sin2x) g(x) where g(x) is continuous . Then f^(1) (x) equals