Home
Class 12
MATHS
If 2xydy=(x^2+y^2+1).dx,y(1)=0 and y(x0)...

If `2xydy=(x^2+y^2+1).dx,y(1)=0` and `y(x_0)=sqrt3` then `x_0` can be

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: (x^2+y^2)dx+3xydy=0

Solve: (x^2 + y^2).dx-2xydy = 0, given y = 0 when x = 1

If y=int1/(1+x^2)^(3/2)dx and y=0 when x=0 , then value of y when x=1 is

If y=int1/(1+x^2)^(3/2)dx and y=0 when x=0 , then value of y when x=1 is

If y=int1/(1+x^2)^(3/2)dx and y=0 when x=0 , then value of y when x=1 is

(x^(2)+y^(2))dx-2xydy=0 , given y=0 when x=1

If y(x) is a solution of differential equation sqrt(1-x^2) dy/dx + sqrt(1-y^2) = 0 such that y(1/2) = sqrt3/2 , then

If y(x) is a solution of differential equation sqrt(1-x^2) dy/dx + sqrt(1-y^2) = 0 such that y(1/2) = sqrt3/2 , then

Solve (x^(2)-3y^(2))dx+2xydy=0