Home
Class 12
MATHS
Let function y-f(X) satisfies the differ...

Let function y-f(X) satisfies the differential equation `x^2 (dy/dx) = y^2 e^(1/x)(x!=0) `and ` lim_(x->0^-) f(x)=1`, Identify the correct statement

Promotional Banner

Similar Questions

Explore conceptually related problems

A function y=f(x) satisfies the differential equation (dy)/(dx)+x^(2)y+2x=0,f(1)=1 then the value of f(1) is-

Let y=f(x) satisfy the differential equation (dy)/(dx)=(x+y)/(x),y(1)=1, then y((1)/(e)) is equal

If y=f (x) satisfy the differential equation (dy)/(dx) + y/x =x ^(2),f (1)=1, then value of f (3) equals:

If y=f (x) satisfy the differential equation (dy)/(dx) + y/x =x ^(2),f (1)=1, then value of f (3) equals:

If y=f(x) satisfy differential equation ( dy )/(dx)-y=e^(x) with f(0)=1 then value of f'(0) is

If y=f(x) satisfies the differential equation (dy)/(dx)+(2x)/(1+x^(2))y=(3x^(2))/(1+x^(2)) where f(1)=1 , then f(2) is equal to

If y=f(x) satisfies the differential equation (dy)/(dx)+(2x)/(1+x^(2))y=(3x^(2))/(1+x^(2)) where f(1)=1 , then f(2) is equal to

Let y =f (x) satisfies the differential equation xy (1+y) dx =dy . If f (0)=1 and f (2) =(e ^(2))/(k-e ^(2)), then find the value of k.