Home
Class 11
MATHS
If xy+yz+zx=1 show that x/(1-x^2)+y/(1-y...

If `xy+yz+zx=1` show that `x/(1-x^2)+y/(1-y^2)+z/(1-z^2)=(4xyz)/((1-x^2)(1-y^2)(1-z^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x+y+z=xyz , prove that x/(1-x^2)+ y/(1-y^2)+z/(1-z^2) =(4xyz)/((1-x^2)(1-y^2)(1-z^2))

If xy + yz + zx = 1 , prove that : x/(1-x^2)+y/(1-y^2)+z/(1-z^2)= (4xyz)/((1-x^2)(1-y^2)(1-z^2)) .

If xy+yz+xz=1, then prove that (x)/(1-x^(2))+(y)/(1-y^(2))+(z)/(1-z^(2))=(4xyz)/((1-x^(2))(1-y^(2))(1-z^(2)))

If x+y+z=xyz then show that (2x)/(1-x^(2))+(2y)/(1-y^(2))+(2z)/(1-z^(2))=(8xyz)/((1-x^(2))(1-y^(2))(1-z^(2)))

If x + y + z =xyz,show that (2x)/(1-x^2)+(2y)/(1-y^2)+(2z)/(1-z^2)=(2x)/(1-x^2).(2y)/(1-y^2).(2z)/(1-z^2)

If x + y + z = xyz , prove that x(1 -y^(2)) (1- z^(2))+ y(1- z^(2))(1- x^(2)) +z(1-x^(2)) (1- y^(2)) = 4xyz .

If x+y+z=xzy , prove that : x(1-y^2) (1-z^2) + y(1-z^2) (1-x^2) + z (1-x^2) (1-y^2) = 4xyz .

If x+y+z=xzy , prove that : x(1-y^2) (1-z^2) + y(1-z^2) (1-x^2) + z (1-x^2) (1-y^2) = 4xyz .

If xy+yz+zx=1, " then " (x)/( 1+x^(2))+(y)/(1+y^2)+(z)/(1+z^(2))=