Home
Class 12
MATHS
If int0^1e^t/(t+1) dt=a, then int(b-1)^b...

If `int_0^1e^t/(t+1) dt=a`, then `int_(b-1)^b e^(-t)/(t-b-1) dt`=

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluation of definite integrals by subsitiution and properties of its : int_(0)^(1)(e^(t))/(t+1)dt=a then int_(b-1)^(b)(e^(-t))/(t-b-1)dt=...........

If rArr int_(0)^(1) (e^(-t))/(t+1) dt =a, "then"int_(b-1)^(b) (e^(-1))/(t-b-1)dt is equal to

If b=int_(0)^(1) (e^(t))/(t+1)dt , then int_(a-1)^(a) (e^(-t))/(t-a-1) is

If int_(0)^(1)(e^(t)dt)/(t+1)=a , then int_(b-1)^(b)(e^(-t)dt)/(t-b-1) is equal to a) ae^(-b) b) -ae^(-b) c) be^(-b) d)None of these

Let A = int_(0)^(1)(e^(t))/(1+t) dt , then int_(a-1)^(a)(e^(-1))/(t-a-1) dt has the value :

If int_0^1 (e^t dt)/(t+1)=a, then evaluate int_(b-1)^b (e^t dt)/(t-b-1)

If int_0^1 (e^t dt)/(t+1)=a, then evaluate int_(b-1)^b (e^t dt)/(t-b-1)

Let A = int_0^(1) e^(t)/(t+1) dt , then int_0^(1) (t.e^(t^(2)))/(t^(2)+1) dt =

If int_0^1 (e^t)/(1 + t) dt = a, then int_0^1 (e^t)/((1 + t)^(2))dt is equal to:

If int_(0)^(1)(e^(t)dt)/(t+1)=a, then evaluate int_(b-1)^(b)(e^(t)dt)/(t-b-1)